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Measurements of A//*_, for recombination of Ru(III) and alkyl 
radicals are not available, but the literature contains data on 
analogous Co(II) systems,1314 for which recombination occurs at 
nearly diffusion-controlled rates (A#*_, = ca. 2 kcal/mol). 
Assumption of a similar rate for the Ru(III) species 3 yields a 
bond dissociation energy of 21.7 ± 1.5 kcal/mol for 1. 

Thermochemical data are sparse for organometallic complexes15 

with the exception of the cobalt alkyls which have been of great 
interest due to metal-carbon bond homolysis in the vitamin Bi2 

cofactor.13,16 It is interesting to note that our value for the BDE 
in 1 lies within the 18-32 kcal/mol range found by Finke and 
Halpern for Co-C bond dissociation in cofactor B12 and its 
analogues.13'14'16 However, the stability of 3 to further Ru-ethyl 
cleavage under our reaction conditions suggests that the BDE of 
1 may be anomalously low, possibly due to the large trans effect 
of the second alkyl ligand. 
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A large number of cage hydrocarbons have been synthesized 
in the last few decades.1"5 These compounds do not have an atom 
or metal ion in the center of the molecule and their inner cavities 
are vacant. Some attempts have been made to entrap a metal 
ion or a small neutral molecule into the cavity of such cage 
hydrocarbons,6,7 but the desired "core compounds" have not yet 
been reported.8,9 Synthesis of intramolecularly pentabridged 
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Figure 1. ORTEP drawings of 2b projected on the Cp ring (a) and on the 
side of the molecule (b) and space-filling representation (c). 

ferrocene, an analogue of superphane,3 provides an example of 
this type of core compound. Much effort to synthesize such 
compounds10 has been made by several groups.11"14 However, 
compounds having four or five bridges have not been found until 
we recently synthesized some tetrabridged ferrocenophanes15 and 
pentabridged [44][3]ferrocenophanes (I)16 containing one tri-

1 a : X = O 2 

b: X = H 2 

methylene bridge. This paper describes the synthesis and char­
acterization of symmetrical perbridged [45] ferrocenophane (2b),17 

the ultimate target compound. 
Insertion of a one-carbon unit into the oxotrimethylene bridge 

of the precursor ferrocenophane la16 was not successful by ap­
plication of the reaction conditions which we had developed for 
the bridge enlargement of multibridged ferrocenophanes.18 This 
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difficulty was overcome by using an excess of reagents and running 
the reaction under strict control. To a solution of ketone la in 
benzene was added an excess of BF3-OEt2 (ca. 10 equiv to the 
substrate). The resulting dark violet solution was stirred for 30 
min under a nitrogen atmosphere, and a large excess of diazo-
methane in ether, free front alcohols and moisture, was added to 
the solution of the aged complex. Chromatographic separation 
of the product yielded bridge-enlarged a-oxoferrocenophane 2a 
(18%) as orange-yellow crystals: mp >300 0C; IR, 1655 cm-1 

(KC=O); high-resolution MS, m/z 470.2293 (calcd mol wt, 
470.2270); 13C NMR (100.4 MHz, CDCl3) 5 24.2-44.3 (11 peaks, 
methylene C), 80.5-85.7 (six peaks, Cp C), 209.31 (C=O); ab­
sorption spectrum Xmax (THF), 425 nm (e 313). Reduction of 
the ketone 2a with LiAIH4/AlCl3 in ether quantitatively gave the 
target compound 2a, as yellow needles: mp >300 0C; high-res­
olution MS, m/z 456.2470 (calcd mol wt, 456.2477); absorption 
spectrum Xmax (THF), 403 nm (e 89). The 1H NMR spectrum 
(400 MHz, CDCl3) of 2b showed two signals for the methylene 
resonances (5 1.97, Wh/1 = 24.8 Hz, a-CH2; 5 2.54, Wh/2 = 15.2 
Hz, /3-CH2)." No other signal was present. The 13CI1H) NMR 
spectrum (25.1 MHz, CDCl3), obtained under complete decou­
pling conditions, was dramatically simple as expected. Only three 
signals were observed at S 84.46, 26.90, and 23.55, and these were 
assigned to the Cp rings and the /3- and a-methylene carbons, 
respectively.19 The NMR spectra thus indicate that the compound 
has Did or Dih symmetric structure. 

The crystal structure of 2b was determined by X-ray diffrac­
tion.20 Figure la,b shows the molecular structure in which each 
atom is drawn by a thermal ellipsoid of 30% probability. Whereas 
the thermal vibrations of the atoms of the ferrocene nucleus are 
small and almost isotropic, those of the /3- and ^'-carbon atoms 
on the bridges are large and remarkably anisotropic, their major 
axes being directed almost perpendicular to the C3-C3 bonds. The 
distances between the 0- and /S'-carbons are unusually short (1.286 
(17)—1.356 (13) A), which may result from the anisotropic thermal 
motions and/or static disorders of the bridging carbons in the 
crystal. In fact, if one calculates the C3-C3- distances by taking 
the positions of the C3 and C3- atoms, not at the center of the 
ellipsoid but shifted in the opposite direction to each other within 
their thermal ellipsoids, one can find the positions that give a 
normal C-C bond length. The Cp rings show a good planarity 
and the deviations of the Cp carbon atoms from their own 
least-squares planes are small (below 0.006 A). On the other hand, 
all the a-carbon atoms linked to the Cp ring deviate by 0.127 
(6)-0.160 (5) A from this plane in the opposite direction to the 
iron atom. The Cp rings are almost stacked parallel to each other 
and are in an eclipsed conformation about the Cp-Fe-Cp axis. 
The distance between the Cp ring and iron atom is 1.622 (3) A, 
which is slightly smaller than that found in the corresponding 
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least-squares calculations. In the final stage of the refinement, the anomalous 
dispersion corrections were applied for iron atoms. (The space group, Ii2d 
has a glide plane and nonenantiomorphic but has no center of symmetry.) 
Hydrogen atoms were not included. If the hydrogen atoms were placed at 
the calculated positions and refined with isotropic temperature factors, the 
R factor decreases to 0.053, but in view of the fact that the bridging carbon 
atoms have a pronounced temperature factor, all the hydrogen atoms are not 
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tetrabridged ferrocenophane (1.630 (2) A).21 The whole shape 
of the superferrocenophane22 is nearly spherical as shown in Figure 
Ic. 
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aromatic 7r-electron systems. Complete hydrogenation of the Cp rings may 
liberate a neutral iron atom from the bond. If the iron atom escapes from 
the molecule through small openings between the methylene chain, a cage 
hydrocarbon will be formed. If not, a novel cage compound keeping the 
neutral iron atom inside the hydrocarbon network will be generated from the 
superferrocenophane. Further experiments for testing these interesting 
questions are in progress. 
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New synthetic operations which result in the annulation of 
carbocyclic derivatives with the net incorporation of latent 
functionality will exhibit great utility for the elaboration of natural 
products. In principle, the intramolecular interception of a highly 
reactive episulfonium ion by an appropriate carbon-centered 
nucleophile would constitute a powerful method for effecting 
cyclizations of this type. In this communication we report a novel 
and exceptionally versatile protocol for the generation of sulfenium 
ion equivalents and delineate the first examples of cationic ar-
ene-alkene cyclizations mediated by these species (Scheme I). 

All of the previously reported procedures for the carbofunc-
tionalization of alkenes via episulfonium ions require the use of 
sensitive silver salts1"3 or result in the formation of the nucleophilic 
byproduct dimethyl sulfide.4-6 These characteristics have imposed 
severe limitations on the application of episulfonium ion initiated 
cyclizations to carbocycle annulation. We have found that rep­
resentative annulations of this type proceed efficiently in the 
presence of methyl benzenesulfenate (4)7 and an appropriate Lewis 
acid.8 Accordingly, exposure of the substrate 5a" to 1.05 equiv 
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